Hydrogels: Radiation Shield for Space Missions

Hydrogels: Radiation Shield for Space Missions
  1. Home
  2. Astronomy & Space
  3. Space Exploration

February 13, 2025

The GISTEditors' notes

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

Hydrogels could be ideal radiation protection for astronauts

by David Dickinson, Universe Today

Hydrogels could be ideal radiation protection for astronauts
Space radiation: the threat is real. Credit: ESA

It's a key problem that will need to be addressed if humans are to attempt deep-space, long-duration missions. Not only is radiation exposure a dangerous health risk to humans, but it also poses a hazard to equipment and operating systems. Now, a team at Ghent University in Belgium are testing a possible solution: 3D printed hydrogels, which could provide deformable layers of water-filled protection.

Water acts as a great radiation shield. Relatively dense, the hydrogen-laden H2O molecule can slow down radiation particles as they zip past. Plus, water is something that astronauts will have to bring lots of on deep space missions. We have our own built-in water shielding on Earth with the atmosphere above, with the added benefit of the Earth's magnetic field beyond.

Exposure sources are mainly two types: space weather (from the sun) and cosmic (from outside the solar system) from ancient and exotic sources, such as supernovae explosions. The 11-year intensifies solar activity, while we see an uptick in when our sun is at a lull.

Radiation and its risk to spaceflight. Credit: ESA
Radiation and its risk to spaceflight. Credit: ESA

Radiation exposure on the ISS

From the earliest days of the Space Age, astronauts have reported seeing occasional flashes in their eyes… even when closed. We now know this is due to high energy particles zipping through and interacting with the aqueous and vitreous humors (fluids) in the eye, and (somewhat disturbing to think about) the brain. Astronauts in low Earth orbit aboard the ISS have sheltered from solar storms in the past, taking advantage of the core modules which are at least surrounded by the bulk of the station.

But as far as providing personal protection, water poses a challenge. Bulky suits can limit movement and spring a leak: a bad thing to have happen in space. Super-absorbent polymers (SAPs) designed by the Chemistry and Biomaterials Group (PBM) at Ghent University could function as an alternative, and are more effective versus circulating water.

Timelapse of an expanding hydrogel absorbing water. Credit: ESA

Enter hydrogel

SAP can absorb a hundred times its weight in liquid. This makes it an ideal lightweight and portable material to work with. Think of the "monster toys" that expand in size: just add water. Unlike traditional circulation systems, the water in hydrogel is not free-flowing, making it resistant to leakage during a puncture.

"The beauty of this project is that we are working with a well-known technology," says Lenny Van Daele (Ghent University) in a recent press release. "Hydrogels are found in many things we use every day."

Hydrogels are common in consumer products, including , bio-materials, and medical bandage gels.

"The super-absorbent polymer that we are using can be processed using multiple techniques, which is a rare and advantageous quality among polymers," says Manon Minsart (Ghent University) in the same ESA press release. "Our method of choice is 3D printing, which allows us to create a hydrogel in almost any shape we want."

Radiation exposure en route to Mars

The problem posed by space radiation on long duration missions cannot be overstated. It's something that will have to be solved, if humans are to make the long round trip journey to Mars.

Curiosity's RAD experiment carried on its journey to the Red Planet in 2012 demonstrated the magnitude of the dilemma. Astronauts on a Mars mission would receive 60 rem/0.6 Sieverts… about a career's-worth of acceptable , in one mission.

The problem is far from solved, but may provide a solution in the years to come. It will be exciting to see hydrogels used as a common feature on future deep space missions, to keep astronauts and equipment safe.

Provided by Universe Today


Explore further

Researchers identify effective materials for protecting astronauts from harmful cosmic radiation on Mars


0 shares

Feedback to editors

Measuring the size of a neutrino: Physicists suggest it's considerably larger than an atomic nucleus

50 minutes ago

0

2 hours ago

0

New radiocarbon dates establish 6,000-year time span for human remains pulled from River Thames

2 hours ago

0

Macaques demonstrate human-like skill by associating words with pictures

2 hours ago

0

'Water tweezers': New technique generates topological structures with gravity water waves

3 hours ago

0

Relevant PhysicsForums posts

Speediest Exoplanet System

8 hours ago

Solar Activity and Space Weather Update thread

Feb 9, 2025

Would discovery of a galaxy without dark matter disprove MOND?

Feb 7, 2025

I Need Help on Understanding Some Basic Astrophysics / Sand Clock Universe

Feb 7, 2025

Asteroid 2024 YR4 has a 1% risk of a multi-megaton impact in 2032

Feb 7, 2025

Our Beautiful Universe - Photos and Videos

Feb 4, 2025

More from Astronomy and Astrophysics

Get Instant Summarized Text (Gist)

Hydrogels, particularly those made from super-absorbent polymers, are being explored as a potential radiation shield for astronauts on deep-space missions. These materials can absorb significant amounts of water, which is effective at slowing down radiation particles. Unlike traditional water systems, hydrogels are resistant to leaks and can be 3D printed into various shapes, offering a flexible and lightweight solution for radiation protection.

This summary was automatically generated using LLM. Full disclaimer

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

-- please select one --Compliments / CritiqueTypos / Errors / InaccuraciesEdit / Removal requestYour message to the editorsYour email (only if you want to be contacted back)Send Feedback

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story
Hydrogels could be ideal radiation protection for astronauts

Your friend's emailYour emailI would like to subscribe to Science X Newsletter. Learn moreYour name

Note

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Your messageSend

Newsletters

SubscribeScience X Daily and the Weekly Email Newsletter are free features that allow you to receive your favorite sci-tech news updates in your email inbox

Follow us

© Phys.org 2003 - 2025 powered by Science X NetworkPrivacy policy Terms of use

Subscribe to Josh Universe newsletter and stay updated.

Don't miss anything. Get all the latest posts delivered straight to your inbox. It's free!
Great! Check your inbox and click the link to confirm your subscription.
Error! Please enter a valid email address!